79 research outputs found

    Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype

    Get PDF
    Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype

    A non-invasive approach to monitor chronic lymphocytic leukemia engraftment in a xenograft mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI).

    Get PDF
    This work was supported by: Associazione Italiana Ricerca sul Cancro (AIRC) [Grant 5 x mille n.9980, (to M.F., F.M. and A. N.)]; AIRC I.G. [n. 14,326 (to M.F.)], [n.10136 and 16,722 (A.N.)], [n.15426 (to F.F.)]. AIRC and Fondazione CaRiCal co-financed Multi Unit Regional Grant 2014 [n.16695 (to F.M.)]. Italian Ministry of Health 5 × 1000 funds (to F.F). A.G R. was supported by Associazione Italiana contro le Leucemie-Linfomi-Mielomi (AIL) Cosenza - Fondazione Amelia Scorza (FAS). S.M. C.M., F.V., L. E., S. B., were supported by AIRC.Peer reviewedPostprin

    Agonist activation of estrogen receptor beta (ERβ) sensitizes malignant pleural mesothelioma cells to cisplatin cytotoxicity

    Full text link
    BACKGROUND: Estrogen receptor (ER) \u3b2 acts as a tumor suppressor in malignant mesotheliomas. METHODS: Here we explored the anti-proliferative and anti-tumorigenic efficacy of the selective ER\u3b2 agonist, KB9520, in human mesothelioma cell lines in vitro and in a mesothelioma mouse model in vivo. RESULTS: KB9520 showed significant anti-proliferative effect in ER\u3b2 positive human malignant pleural mesothelioma cells in vitro. Selective activation of ER\u3b2 with KB9520 sensitized the cells to treatment with cisplatin, resulting in enhanced growth inhibition and increased apoptosis. Furthermore, in CD1 nude mice mesothelioma tumor growth was significantly inhibited when KB9520 was added on top of the standard of care chemo combination cisplatin/pemetrexed, as compared to the cisplatin/pemetrexed alone group. Importantly, KB9520 exerted a protective effect to cisplatin toxicity in the non-malignant mesothelium derived MET5A cells. CONCLUSIONS: Together, the data presented suggest that selective targeting of ER\u3b2 may be an efficacious stand-alone treatment option and/or become an important add-on to existing malignant mesothelioma therapy

    Molecular and Immunological Characterization of Staphylococcus aureus in Pediatric Atopic Dermatitis: Implications for Prophylaxis and Clinical Management

    Get PDF
    S. aureus represents a critical cofactor in atopic dermatitis (AD). In this paper, the prevalence of S. aureus infection/colonization was evaluated in 117 children as well as in their cohabitants, in order to assess the value of S. aureus characterization in predicting disease onset and severity and in providing indications for prophylaxis. Results showed that children with AD as well as their cohabitants had a significantly greater incidence of S. aureus infection/colonization as compared to controls. The genetic characterization showed a virtual identity of the bacteria strains collected at different sites of the patients with those found in the cohabitants, suggesting both a direct transmission between the nasal reservoir and the lesions in the same atopic subject and a risk for reinfection within family cohabitants. These data stress the need of preliminary laboratory assessment and posttherapy control in both AD patients and their close contacts for effective S. aureus eradication

    Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. <it>Curcumin </it>is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested <it>in vitro </it>various <it>curcumin</it>-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors.</p> <p>Results</p> <p>In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to <it>curcumin</it>. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to <it>curcumin</it>, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome <it>c </it>release. <it>In vivo </it>anti-tumor activity of <it>curcumin </it>and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and <it>curcumin </it>treated ones (Melanoma: D6 <it>vs </it>control: <it>P < 0.001 </it>and D6 <it>vs curcumin P < 0.01; </it>Neuroblastoma: D6 <it>vs </it>both control and <it>curcumin</it>: <it>P < 0.001</it>).</p> <p>Conclusions</p> <p>Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors.</p

    Enhanced anti-tumor activity of a new <i>curcumin</i>-related compound against melanoma and neuroblastoma cells

    Get PDF
    Background Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors. Results In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P &lt; 0.001 and D6 vs curcumin P &lt; 0.01; Neuroblastoma: D6 vs both control and curcumin: P &lt; 0.001). Conclusions Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors

    A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging

    Get PDF
    BACKGROUND: Osteosarcoma (OSA) is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c) murine OSA model, using a cell line derived from a spontaneous murine tumor. METHODOLOGY: The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. PRINCIPAL FINDINGS: Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. CONCLUSIONS: This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation
    corecore